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Abstract

Due to recent explosion of text data, researchers have
been overwhelmed by ever-increasing volume of articles
produced  by  different  research  communities.  Various
scholarly  search  websites,   citation  recommendation
engines,  and  research  databases  have  been  created  to
simplify the text search tasks. However, it is still difficult
for researchers to be able to identify potential research
topics without doing intensive reviews on a tremendous
number  of  articles  published  by  journals,  conferences,
meetings,  and workshops.  In  this  paper,  we consider  a
novel  topic  diffusion  discovery  technique  that
incorporates  sparseness-constrained  Non-negative
Matrix  Factorization  with  generalized  Jensen-Shannon
divergence to help understand term-topic evolutions and
identify topic diffusions.  Our experimental  result  shows
that  this  approach  can  extract  more  prominent  topics
from  large  article  databases,  visualize  relationships
between terms of interest and abstract topics, and further
help researchers understand whether given terms/topics
have  been  widely  explored  or  whether  new  topics  are
emerging from literature. 

Keywords:  Topic  Modeling;  Topic  Diffusion;  Topic
Detection  and  Tracking;  Non-Negative  Matrix
Factorization; Information Divergence 

1. Introduction

Information  and  Communication  Technology  (ICT)
have  been  reshaping  nearly  every  corner  of  the  world,
especially the way of people's communication. Today, our
knowledge can be easily collected, stored, and distributed
digitally.  Researchers  have  been  using  new
communication  tools  to  facilitate  the  exchange  of
information.  However,  these  document  (text)  data  have
grown  exponentially  in  recent  decades,  and  numerous
research  articles  are  created,   digitized,  and  stored  in
various research databases. It is almost impossible for a
researcher to do thoroughly literature search and review
on a tremendous number of articles in order to understand

recent  progress  of  his/her  research  of  interest.  Many
research databases, scholarly search engines, and citation
recommendation systems have been created to help tackle
this problem. To gather literature related to a research is
much easier  today, but we are still  facing challenges to
determine  whether  a  research  topic  (or  just  a  term)  is
rarely explored by others, just emerging from discussions
of small groups, or potentially connected to topics in other
fields of studies—problems of topic diffusion discovery.

In  recent  years,  cheaper  cost  of  computing  power
makes it possible to analyze vast amounts of textual data
and to extract  useful information from them within rea-
sonable times. To cope with the aforementioned problems
from large text, Topic Models [1] and related techniques
are proposed to identify hidden semantic structures  that
may  help  us  annotate,  re-organize,  and  understand  the
contents  of  texts  from higher-level  abstract  topics. The
most  well-known topic  modeling  techniques  are  Latent
Dirichlet Allocation (LDA) [2] and Non-negative Matrix
Factorization  (NMF)  [3]. LDA is a kind of generative
probabilistic model that assumes documents exhibit multi-
ple abstract  topics  consisting of  some words/terms in a
given set of vocabulary, whereas NMF is a sort of non-
probabilistic dimensionality reduction technique that con-
siders documents can be represented by additive combina-
tions of  some major parts  (topics)  of  objects.  Both ap-
proaches and their extensions have been successfully ap-
plied to topic modeling and other fields, but researchers
have found that both are difficult to be used in dynamic or
interactive fashions to track the diffusions of existing top-
ics or to detect the emergences of new topics [4–7]. That
is,  many real-world topic modeling applications require
existing topic models to be able to efficiently update topic
models  when  new documents/text  data  stream  appears,
and to identify significant topic changes as text data in-
creases over time.

In this paper, we introduce a novel topic diffusion dis-
covery  technique  that  combines  a  modified  sparseness-
constrained NMF [8] and generalized Jensen-Shannon di-
vergence  (DGJS) [9–10] aiming at  building topic models
with more prominent topics and detecting topic diffusion
by monitoring the changes of probability distributions of
given terms among multiple topics. That is, for example,



suppose  we have  built  topic models  from thousands of
news articles. We might find that the probability distribu-
tions of "cell phone" and "camera" together in some top-
ics (e.g. "Electronics" and "Lifestyle") have been chang-
ing dramatically in the past few decades, as cell phones
with cameras have been transforming our mobile lifestyle
in recent years—the topic diffusion. The goal of the pro-
posed approach is to exhibit  probability distributions of
given  terms  associated  with  the  topics  (identified  by
aforementioned sparseness-constrained NMF) and evalu-
ate its convergence or divergence of these probability dis-
tributions  in  different  times.  By "divergence"  here,  we
mean  the  Information  Divergence commonly  used  in
measuring abrupt or evolutionary changes among two or
multiple probability  distributions.  We here  consider  ap-
plying  DGJS  to the evaluation because of its boundedness
property that provides certain limits of the divergence and
statistically significant threshold that simplifies the evalu-
ation of magnitude of the divergence.

The  rest  of  this  paper  is  organized  as  follows. In
Section 2, we review related works of topic modeling and
text  analytics.  NMF  and  its  extensions,  such  as
sparseness-constrained  NMF  techniques,  are  also
discussed. We consider proposed approach in Section 3.
In  Section  4,  we  present  and  discuss  our  experimental
results on a large number of research articles from a real-
world  research  article  database  related  to  "Machine
Learning". In Section 5, we conclude and summarize our
findings.

2. Background and Related Work

Today,  our  collected  knowledge  can  be  easily
digitized and stored into text data. The recent advance of
ICT has facilitated the communication and processing of
information,  but  has  also  resulted  in  the  explosion  of
digital  text  data.  Many  researchers  in  text  analytics
communities have proposed techniques that automate the
processing  of  text  in  order  to  extract  information  and
knowledge  from  large  amounts  of  unstructured  text.
Topic modeling [11] is one of the famous techniques that
learns latent/hidden semantic structures of text consisting
of multiple terms as abstract topics. In the last decade, the
most  popular  probabilistic  topic  model  was  Latent
Dirichlet  Allocation  (LDA)  [2–3] which assumes that  a
document is composed of multiple topics and a topic is a
distribution over a fixed set of pre-defined words (i.e. a
general  or  domain-specific  dictionary).  LDA  has  been
very  successful  because  of  its  flexible  models  and
interpretable  topics.  It  has  also  been  widely  applied  to
various  domains  and  many  extensions  have  been
proposed  [5], [13]. Nevertheless, due to its probabilistic
nature and sampling-based procedure, typical LDA might
give  inconsistent  results  from multiple  runs  and
significant topic member (term) changes when text data

does not exhibit clear topics [7], which hinders itself from
real-world online or interactive text analytics applications.
Instead, we here consider non-probabilistic topic models,
Nonnegative Matrix Factorization (NMF) [3], which is a
deterministic topic learning algorithm that could generates
consistent results given the same text corpus and learning
parameters,  such as multiple runs with the same matrix
initialization factor [14].

Similar to other matrix factorization techniques, such
as Singular Value Decomposition (SVD) [15], NMF gives
low-rank matrix approximation but more intuitive, parts-
based,  and  additive  representations  of  the  original  data
matrix. It has been applied to various fields, such as clas-
sification/comparison  of  face  recognitions,  music  tran-
scription of signal processing, and topic modeling in text
mining  [3], [16],  [17].  The non-negative constraints on
lower-rank  factorized  matrices  of  NMF (i.e.  document-
topic  and  topic-term  matrices)  is  particularly  useful  in
learning topic models from text data, as all elements of
document-term matrices constructed from large text cor-
pus are naturally non-negative. Also, unlike latent seman-
tic structures/indexing based on SVD, the latent semantic
space  derived  by NMF does not  have  to be orthogonal
[18], which means that NMF can learn latent semantic di-
rections for different topics but allow overlapping terms
over multiple topics.

Another  important  issue  of  learning  topic  models
based on typical NMF is that, although a topic can be con-
sidered an additive representation of multiple terms with
weights/proportions from its  coefficient  matrix,  there  is
no way to control the sparseness of the coefficient matrix
(i.e. the degree of how "active" of these terms are) [8]. It
suggests that we may obtain a topic consisting of some
key  terms  along  with  hundreds  of  trivial  terms.  Re-
searchers  have  proposed  various  sparseness-constrained
NMF learning algorithms that tackle this problem by im-
posing sparseness constraints on basis matrix and/or coef-
ficient matrix in order to learn more local and prominent
features/patterns  [8], [19]. In this paper, we consider us-
ing  Nonsmooth  Nonnegative  Matrix  Factorization
(nsNMF) [20] that puts sparseness constraints on both ba-
sis and coefficient matrices so as to extract highly local-
ized patterns and better interpretability of the roles of doc-
uments and terms in topics. That is, for example, suppose
we  have  identified  and  named  multiple  abstract  topics
(e.g. "Finance", "Politics", and "Science") from thousands
of  news  articles  using  NMF.  And  we found  that  these
topic  share  the  same term "unemployment  rate".  How-
ever,  what  is  the proportion of "unemployment rate"  in
each topics? Also, what is the proportion of all documents
associated with a particular topic? Both new sparse basis
and coefficient  matrices created by nsNMF may answer
these questions.

Besides,  since  the  advent  of  topic  modeling  tech-
niques, text analytics communities are interested in moni-
toring the development of known topics and discovering



the emergences of new topics, as text data usually accu-
mulate over time. Also, the topics must be dynamically
adapted to new text data so that  the new trends can be
captured by the modeling algorithms. To cope with this
problem, dynamic and evolutionary topic modeling tech-
niques  are  proposed  in  the  recent  years.  Evolutionary
Nonnegative  Matrix  Factorization  [21] aims  at  saving
space cost and computational time by incrementally up-
dating factorized matrices without re-running the whole
NMF learning procedure at each time stamp, while a dy-
namic version of NMF with temporal  regularization  [6]
learns  the development of topics by preventing existing
topic members from significant drifts (as evolving topics)
and allowing for  insertion of  new small  topics  into the
model (as emerging topics) for detection purpose. In this
paper, however, we do not consider such online cases of
the topic models. Instead, we define the discovery of topic
evolution  as  the  detection  of  whether  the  proportions/
probabilities  of  given  terms  in all  topics  have  changed
significantly. In the next section, we discuss our proposed
approach in detail.

3.  Topic  Diffusion  Discovery  based  on
Sparseness-constrained NMF

Consider  that  we  have  a  large  text  corpus  with  n
articles/documents  and  a  well-defined  domain-specific
dictionary  with  p terms.  We can  create  a  non-negative
document-term matrix X where each element contains the
frequency of a term that occurs in a document.  Let  X be
the  n by  p document-term  matrix  with  non-negative
frequency values. NMF is used to find two non-negative
matrices W and H such that 

X≈WH

where  W is  an  n by  k basis matrix  and  H is  a  k by  p
coefficient matrix. The goal of a typical NMF is to find a
low-rank approximation to a data matrix X by minimizing
the Frobenius norm ‖.‖F , as:

min
W ,H

f (W ,H )≡
1
2
‖X−WH‖F

2 , s .t .W≥0 , H≥0

where k < min(n, p) and all elements in W and H are also
non-negative. W and H are considered lower dimensional
representations  of  original  X matrix  in  k-dimensional
space. As discussed previously, NMF has been applied to
various fields to learn parts of interest from data matrices.
Also,  imposing sparseness  constraints  on  W and  H can
extract more localized (less-overlapping) features/patterns
of the data, which may improve the interpretability of W
and  H. In  this  paper,  we  propose  using  a  normalized
Nonsmooth  Nonnegative  Matrix  Factorization  (nsNMF)
[20], which is originally defined as:

X≈WSH

where  S∈ℝ
k×k is a positive symmetric smoothing matrix

defined as:

S=(1−θ) I +θ
k
11T

where I is the identity matrix, 1 is a vector of ones and k
is the factorization rank, and θ is the smooth parameter
between 0 and 1 used to control the sparseness of W and
H.  W and  H can  be  considered  a  topic-wise  document
representation  and  term-wise  topic  representation,
respectively. Due to the sparseness constraints on W and
H, a topic is composed of high-weighted terms, whereas a
document is associated with fewer major topics. To detect
whether the proportions of a given term in the topics have
changed significantly, however, we need to know "what
the  proportion  of  a  term  is  in  a  topic"  and  "what  the
proportion  of  a  topic  is  in  a  document",  which  can  be
answered  by  row-normalizing  H.  We  can  do  it  by
rewriting the original nsNMF as:

X≈WSH=WSDhDh
−1H=W(SDh)(Dh

−1H )=W ŜĤ

where  Dh
-1 is an  inverse  scaling  diagonal  matrix  with

corresponding row sums of  H used to normalize  H.  Ŝ
and  Ĥ are  new  smoothing  matrix  and  normalized  H,
respectively. Figure 1 shows how a document-term matrix
X is factorized by proposed normalized nsNMF.

The  normalized  nsNMF  can  therefore  produce  the
output similar to those of other probabilistic topic models

(e.g. LDA) but more localized and interpretable patterns.
In  Ĥ ,  the  proportion  of  a  term in  a  topic  can  also  be
considered the conditional probability of a term i given a

topic k (i.e. P(termi∣topick) and ∑i=1
p Ĥ ki=1). As discussed,

instead, our goal is to monitor the changes of probability
distributions of topics associated with a given term over
time,  which is  to  continuously compute  the  conditional
probability of topic  k given a term i  P(topick∣termi), and
evaluate  the  diffusions  among  them in  different  times.
The  conditional  probabilities  P(topick∣termi) can  be
obtained by Bayes' rule, as:

P(topick∣termi)=
P(termi∣topick )P(topick)

P(termi)

where P(termi∣topick) is  the  proportion  of  a  term in  a
topic obtained from Ĥ . Also, the probability of a topic k
P(topick) is the percentage of all documents associated

with topic  k  in W ,  whereas  the probability  of  a  term  i

Figure 1: Normalized nsNMF



P(termi) is the percentage of all topics associated with
term  i in  Ĥ .  Note that,  by "associated" here,  we mean
those  elements  with P(documentn∣topick)>0 in  W  and
P(termi∣topick)>0 in  Ĥ  respectively.  Next,  to  further

evaluate the magnitude of the topic diffusions,  we con-
sider monitoring the aforementioned  DGJS   [9–10], which
is here defined as:

DGJS(P1,P2,. .. ,Pt)=H (∑
i=1

t

πiPi)−∑
i=1

t

πiH (Pi)

where  πi is  the  weight  for  each  discrete  probability
distribution. We consider assigning equal weight for each
P(topic k∣termi) in time  t.  Also,  H(x) is  k-ary Shannon

entropy that is defined as:

H (x)=−∑
i=1

k

P(xi)logk P (xi)

The DGJS  is a symmetric measure that ranges between 0
and 1.  Also defined in  [9–10], a statistically significant
threshold of the generalized Jensen-Shannon divergence
DGJS|k,t  can  be  asymptotically  approximated  and  repre-
sented by Chi-square statistic χ2 , as 

DGJS∣k ,t≃
Χ df , 1−α

2

2N (lnk)

where df = (k – 1) (t – 1) is the degree of freedom, α is the
statistical significance level (usually 0.05 or 0.01), and N
is the total number of cells (k by t) used in calculating the
Chi-square statistic χ2 in different times.  

Also notice that, as these topics generated by NMF in
different periods are not always aligned with each other
due  to  randomness,  we  have  to  match  these  topics  by
identifying minimum "distances" among conditional prob-
ability distributions given topics in different periods. For
example, suppose we have 2 terms and 3 topics (topic1,

topic2, and topic3) for 2 periods (time1 and time2), and dis-
crete conditional probability distributions  P(term∣topick)
(0.5,  0.5),  (0.1,  0.9),  (0.9,  0.1) for  time1 and (0.8,  0.2),
(0.4, 0.6), (0.1, 0.9) for time2 , respectively. The best topic
matches should be (1→2, 2→3, 3→1), according to the
distances/divergences among topics. To identify the best
matches of topics over the time, we propose using Hun-
garian  (Kuhn–Munkres)  algorithm  [7] with  pairwise
Jensen-Shannon divergences as the cost measures. 

Figure 2 shows an overview of our proposed approach.
We here summarize the steps of the approach that helps
discover  topic  diffusions,  which  is,  again,  whether  the
probability distributions of topics associated with a given
term have changed significantly over time. We first create
document-term  matrix  Xt based  on  document  data  and
pre-defined  dictionary.  After  applying  the  normalized
nsNMF to the matrix  Xt  , we can obtain the conditional
probabilities of  k topics for a given term. The  DGJS and
DGJS|k, t at time t can later be calculated. We keep updating
and  re-running  this  process  when  new  documents/text
data appears. By checking whether DGJS is higher or lower
than  the  threshold  DGJS|k,  t  with  α =  0.01,  we can  learn
whether  the given term is  convergent or  divergent,  and
whether there is any significant change on the given term
over  the  topics.  Take  the  "Electronics"  and  "Lifestyle"
topic evolution in Section 1 as an example, we here would
like to know how "cell phone" or "camera" is associated
with topic "Electronics" and "Lifestyle" over time. 

4. Experiment and Discussion

In  this  section,  we  present  our  experimental  results
and discuss findings of the proposed approach. To evalu-
ate feasibility of the approach, we collected open-access
and publicly available articles related to "Machine Learn-
ing" in  2004/01-2016/12  from  arXiv.org  stat.ML  [22].

Figure 2: Overview of Proposed Topic Diffusion Discovery Process  



The goal of using these articles as the text data is to evalu-
ate  whether  proposed  approach  can  extract  meaningful
topics and identify the relationships among research key-
words/terms and topics related to Machine Learning. All
the experiments  were  implemented  in  R  3.4.3  [23]  and
were  performed  on  a  computing  server  with  two  Intel
Xeon CPUs and an NVIDIA Geforce GTX 1080 Ti GPU.
The source code and data are available upon request. We
extracted 7962 raw keywords in articles entered by article
authors as the basic lexicon to build a dictionary specific
to  Machine Learning and related fields. These keywords
were manually reviewed by domain experts, and a table of
keyword  processing  rules  were  created  and  used  to  re-
move/correct  redundant and inaccurate keywords.  There
are total  4187 keywords/terms in the final dictionary and
9044  articles/documents  from 2004/01  to  2016/12.  We
used  R package  tm 0.6-2  [24] to  create  document-term
matrices for later topic analysis after a series of text trans-
formations, including whitespace elimination, lower case
conversion,  inaccurate  term  replacement,  stopword  re-
moval,  and  tf-idf transformation.  Note  that  we  did  not
consider stemming here, as we used our pre-defined dic-
tionary  with  domain-specific  and  discriminative  terms
based on the article keywords from authors. 

To understand the topic diffusions in Machine Learn-
ing, we empirically chose factorization rank k = 10 to ex-
tract ten abstract topics using R package nmfgpu4R [25].
Also, as there are relative fewer articles in arxiv stat.ML
in  2004-2011,  we  consider  creating  six  document-term
matrices  for  2004-2011,  2004-2012,  2004-2013,  2004-
2014, 2004-2015, and 2004-2016 in order to understand
the development of terms and topics. There are 980, 2118,
3296, 4635, 6439, and 9044 accumulated articles during
these  periods,  respectively.  The  proposed  normalized
nsNMF was then applied to six matrices to obtain the con-
ditional  probabilities  for  each  term  given  a  topic,
P(term∣topick).  Also notice that here the sparseness  pa-
rameter  θ is empirically set to 0.4, which could impose
sparseness constraints on both basis and coefficient matri-
ces without losing too much information in original data
matrices [20].

Table 1 shows top-10 terms of the ten topics over six
periods. We can see that most topics seem to exhibit clear
subjects, but there are still a few topics that show some
drifts  and become hard to interpret.  Literature has indi-
cated that  it  is  most likely because existing topics may
evolve and new topics may emerge  [26–27]. And there-
fore  the  choice  of  the  number  of  topics  may  need  to
change over time. In recent years, although some heuristic
methods/measures such as stability  [18] and separability
[27] analyses are proposed, finding the optimal number of
topics has still been a key issue and an open question in
topic modeling [26–27]. Too few topics may produce ex-
tremely broad topics, whereas too many topics may result
in  numerous  narrow  and  similar  topics.  Therefore,  we
here instead would like to know how given terms are as-
sociated with topics  as  well  as how topics evolve  with
times. In the following figures, we present and evaluate
the diffusion of topics and terms based on monitoring the
aforementioned DGJS along with tile plots that indicate the
conditional  probability  of  topic  k given  a  term  i
P(topick∣termi) .

A narrow topic may be represented by a few terms,
and a broad term may be considered a topic. To further
understand the topic diffusions, we here discuss patterns
of the diffusion in terms of topic/term broadness and con-
vergence  along with  DGJS.  Figure  3 shows examples  of
broad and divergent terms. We can see that these terms,
"sequence  data",  "spatiotemporal"  and  "semisupervised
learning",  can  be  considered  relatively  broad  "topics".
They are associated with more topics and their  DGJS  are
getting higher over time. It suggests that these terms are
widely  discussed  and  used  in  many  fields  of  machine
learning  in  2004-2016,  and  there  is  almost  no  sign  of
topic convergences  related to these terms. On the other
hand,  there  are indeed broad but convergent  terms. We
found that "reinforcement learning", "linear model", and
"statistical learning", as shown in Figure 4,  are associated
with a few topics and their DGJS are lower than the thresh-
olds given α = 0.01, which indicates that they are conver-
gent terms and are only used in some fields.  

Figure 3: Broad and divergent terms



Table 1: Top-10 terms over 10 topics for six periods



We next would like to know whether  the proposed ap-
proach could also help discover topic diffusions given rel-
atively narrow terms. In  Figure 5 and  Figure 6, we con-
sider those terms/techniques used in various model learn-
ing tasks. Figure 5 shows that these techniques can be re-
garded as divergent terms because of the upward trends of
the  DGJS..  We may argue that they have been applied to
various fields of machine learning in the past years. On
the contrary, terms in Figure 6 should be considered con-

vergent.  For  example,  although "least  squares"  is  com-
monly  used  in  learning  parameters  (weights)  of  linear
models,  but  its  applications  are  relatively  limited  com-
pared  to  other  techniques  such  as  "gradient  descent".
Also, "markov decision process" and "link prediction" are
popular terms in reinforcement learning and network data
analysis, but we may say that they has not been widely
applied to other fields of machine learning.

Figure 6: Narrow and convergent terms

Figure 5: Narrow but divergent terms

Figure 4: Broad but convergent terms



5. Conclusion

We  proposed  a  novel  approach  that  combines  non-
negative  matrix  factorization  with  generalized  Jensen-
Shannon  divergence  to  discover  topic  diffusions  from
large  text/document  data.  The  experiment  results  show
that it can help build topic models with less-overlapping
topics,  uncover  connections  between  terms  and  topics,
identify  convergent/divergent  terms,  and  determine
whether topics/terms have been widely used in literatures.
The approach  is  applied  to  a  large number of  research
articles and demonstrated to be able to help researchers
understand  the  development  of  research  topics  and
discover the diffusion of specific terms.
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