
Process Discovery using Classification Tree Hidden Semi-Markov Model

Yihuang Kang
Department of Information Management

National Sun Yat-sen University
ykang@mis.nsysu.edu.tw

Vladimir Zadorozhny
School of Information Sciences

University of Pittsburgh
vladimir@sis.pitt.edu

Abstract

Various and ubiquitous information systems are being
used in monitoring, exchanging, and collecting
information. These systems are generating massive
amount of event sequence logs that may help us
understand underlying phenomenon. By analyzing these
logs, we can learn process models that describe system
procedures, predict the development of the system, or
check whether the changes are expected. In this paper, we
consider a novel technique that models these sequences of
events in temporal-probabilistic manners. Specifically, we
propose a probabilistic process model that combines
hidden semi-Markov model and classification trees
learning. Our experimental result shows that the
proposed approach can answer a kind of question–“what
are the most frequent sequence of system dynamics
relevant to a given sequence of observable events?”. For
example, “Given a series of medical treatments, what are
the most relevant patients’ health condition pattern
changes at different times?”

Keywords: Hidden Semi-Markov Models, Classification
and Regression Tree, Process Discovery, Temporal Data
Mining

1. Introduction

The explosion of ubiquitous information systems has
resulted in the exponential growth of operational event
log data, which also has introduced the new age of the
“Big Data” [1]. For example, Bedside Medical Device
Interfaces provide a set of tools that automatically logs
information from devices at the patient’s bedside on
Intensive Care Unit (ICU) monitors; a disease outbreak
detection system records the numbers of outpatient visits
for some particular diseases; and wireless sensor
networks, such as air pollution monitoring and sea surface
temperature detection systems, are deployed in an area to
keep detecting and recording changes of physical or
environmental conditions. These logs, however, are often
used for monitoring purposes and are rarely created for

further data analyses, such as underlying procedure
discovery and business process auditing. By tracking the
dynamics of the patterns identified by domain experts
and/or pattern classification techniques from these logs
over time, we can understand the phenomena of interests
and how they evolve.

We define the process as “a series of activities or
state transitions of a dynamic system that produce some
specific, either deterministic or probabilistic, outcomes.”
[2]. The process discovery refers to a series of actions that
collect activities of instances (e.g. customers of an online
retail store) or changes of system states from event logs of
information systems; use the logs to build process models
that best describe the patterns; track the development of
the systems by monitoring the changes of patterns; and
evaluate the conformance of the development with
expected models. Many approaches related to the process
discovery have been proposed in different fields, such as
process mining [3] and workflow management system [4].
These approaches aim at investigating how to use event
logs of multiple instances to discover the underlying
process models represented as the workflows and check
whether the processes conform to expected process
models. In this paper, however, we consider probabilistic
process models that work on temporal sequence data. The
temporal sequence refers to discrete event sequence data
with event durations. Consider a simple example that we
observe a weather system to understand the connection
between the weather condition and temperature in terms
of feeling. We can discretize the temperature in degrees
centigrade C, (C < 15, 15 ≤ C < 25, 25 ≤ C) into three
different states (Cold, Warm, and Hot). Also, we here only
consider three possible weather conditions (Sunny,
Cloudy, and Rainy) as observations. Suppose we observe
a sequence of weather conditions, “Sunny → Cloudy →
Rainy”, most relevant temperature state sequences could
be “Hot → Warm → Cold”, “Warm → Warm → Cold”,
or any other permutations of three temperature states. We
are interested in developing process models that find such
patterns—“the most probable sequence of states given a
sequence of observations”.

In Figure 1, we illustrate and define the problems we
cope with. Assume that we are monitoring a discrete
dynamic system by collecting event log data that provides
information about conditions of the system. We are
interested in changes of well pre-defined observations of a
phenomenon, (e.g. the weather condit ions of
aforementioned weather system), and we have some
information about the system that may contribute to the
changes.

Figure 1 shows that we can directly see the pre-defined
observable states (also called “observations”). On the
other hand, there are some hidden states of the system that
have impact on the changes of the observations. These
hidden states may be identified by applying data
discretization or pattern classification methods. Provided
that there are some connections between the observations
and hidden states, we can build the probabilistic process
models that discover hidden state patterns given
sequences of observations so as to understand and infer
the development of the system. Therefore, we need
techniques that help us a) identify hidden states
(predictors) related to the changes of the observation
(outcome); b) determine appropriate number of hidden
states that can also be easily interpreted by human; c)
create sequences of the hidden states with durations most
relevant to the sequence of observations.

The rest of this paper is organized as follows. In
Section 2, we review the backgrounds of the process
model and discovery. Tree-based pattern classification
methods and Markov models used in the proposed
approach are also discussed. We consider the proposed
probabilistic process models in Section 3. In Section 4,
we present the experimental results, demonstrate how the
proposed approach solves the problems, and discuss
possible applications.

2. Background and related work

Process models are abstract models that help
understand and describe underlying activities of a system

from its event logs. As discussed in Section 1, many
approaches [3–4] have been proposed to build
deterministic process models. These process models are
often represented by graphical notation languages, such as
Petri Net, Business Process Management and Notation,
and UML Activity Diagram [5]. In this paper, however,
we consider building probabilistic models instead.
Specifically, we assume the system we monitor is a
discrete dynamic system [6] that can be represented by
transitions of system states—sequence of states with
durations and corresponding observations. As these state
transitions could be probabilistic, we can model them
using probabilistic modeling techniques, such as Markov
models and Dynamic Bayesian Networks of Probabilistic
Graphical Models [7]. In this paper, we use a
specialization of the Markov Model—Hidden Markov
model (HMM) [8].

Markov models are simple probabilistic models used
to cope with the temporal sequences. They assume that
the system is stochastic and with Markov property, which
means the development of the dynamic system is assumed
to be a random process that the current state of the system
has the information about the next states. But, the next
state only depends on the present state and are
independent of past states. All the state transitions are
probabilistic. Various kinds of Markov models are
proposed and used in many real-world applications, such
as Google PageRank [9] and speech recognitions [10].
Here, we consider using an extension of the HMM,
hidden semi-Markov models (HSMM), which assumes
that each hidden states has variable duration and may
produce multiple observations while in the state.

As most event logs generated by aforementioned
monitoring systems are not such temporal sequences,
researchers in data mining communities have proposed
using pattern classification [11] and time-series
representation [12] techniques to discretize data into
state-observation temporal sequences. The goal of these
data discretization techniques is to keep the signatures
(e.g. the distance measure) of the original data in
transformed data space. That is, the distances among these
transformed data stream are guaranteed to be similar to
the distances in the original space. In this paper, we use
classification tree of Classification and Regression Tree
(CART) [13] to identify the state-observation sequences,
as the states identified by tree models, compared to other
linear or non-linear classification methods, can be easily
interpreted. Figure 2 shows an example of two different
classification models that divide the data spaces into three
areas using Classification Tree and Support Vector
Machine [14]. We consider the model that predicts the
“Weather Condition” (Sunny, Cloudy, and Rainy as green,
blue, and red dots respectively) with “Atmospheric
Pressure (in hPa)” and “Temperature (in Fahrenheit)” as
the predictors.

Figure 1. Process modeling with discrete
dynamic systems

Depending on where the data points are in, each data
point is assigned a state number that provides the
information about the status of the weather system we
monitor. For example, from the left tree model, we can
learn that if the weather system is in State 1 (Temperature
>= 60), most likely the weather condition is Sunny. Also,
we can see that the misclassification rate of the SVM
model is lower than the rate of the classification tree
model, but the rules from the tree model are relatively
easier to understand. Given the state splitting rules from
the tree models, we can convert all the data points into
state numbers and corresponding observations—the state-
observation temporal sequences used to build the process
models we discussed.

The state splitting methods (or pattern classification
techniques) that define the states as patterns for
HMM/HSMM is an active research area. In many
applications of HMM, such as speech recognition, states
have contextual and temporal domains. The number of
states is initially one. Splits in both domains are tested
and the best one is chosen. The grown HMM topology is
retrained using Baum-Welch algorithm [10]. Maximum-
Likelihood Successive-State-Splitting [15] is a well-
known method that applies this algorithm to speech
recognition fields. Instead, we propose using
Classification Tree as the state splitting method, because
states and the definitions of the states (IF-THEN rules
from tree models) are easy-to-understand by humans.
And, the state definitions can also provide us information
about a system’s state transitions.

An important issue about HMM is how to cope with
variable state durations. In typical HMM, the state
durations are assumed to be fixed. This is not natural for
some dynamical systems that have different state
sojourning times [16], i.e. the time intervals for such
systems staying in each state are variable. In the recent
decades, many researchers have indicated that modeling
with HMM may be unrealistic and inaccurate when HMM
is used in the applications that the state duration

distributions (sojourning times) are different [17–18].
That is, the state durations are assumed to be all identical,
which implies that the state durations are geometrically
distributed. In this case, we consider the probability of
spending continuous m times/steps in i state as:

di(m)=pii
m-1(1−pii)

where di(m) is is the state duration (sojourning time)
density and pii is the probability that state i transits to
itself. We here model the probability that how many time
(m steps) a system will take to “leave” state i. That is, for
example, Figure 3 shows a simulation of state duration
distribution given pii = 0.8.

We can see that, most likely, the system will stay in the
state for less than 20 steps. Obviously, for most HMM
applications, the state duration distributions are not
necessarily in this particular “shape” (geometrically-
distributed). In this paper, instead of using typical HMM,
we therefore consider HSMM that explicitly models
duration distribution for each state.

3. Proposed approach—Classification Tree
Hidden Semi-Markov Model

In this section, we consider the proposed approach,
Classification Tree Hidden Semi-Markov Model
(CTHSMM), along with previous weather system as the
example.

3.1 Process Discovery using CTHSMM

Suppose that we have a classification tree with three
leaf nodes as shown in Figure 4. The tree model has
divided the data space into three regions with predicted
probabilities for three weather conditions (i.e. Sunny,
Cloudy, and Rainy). We can then build an HSMM with
three hidden states and an emission (observation) matrix
from the predicted probabilities in three leaf nodes.

Figure 2. Rules extraction from Classification
Tree and SVM

Figure 3. State duration distribution
with pii = 0.8

The state splitting rules extracted from the tree can then
be used to convert each data point into a state number. By
counting the number of state number transitions, we can
create the state transition matrix of the HSMM. Table 1
shows an example of synthetic data with corresponding
state numbers and their durations.

As discussed in Section 2, the state durations are not
necessarily identical in most real-world applications. The
state duration distributions may also not be geometric if
the weather system is unstable. In such cases, we should
consider HSMM, as it explicitly estimates the duration
distribution for each state [16]. Instead of using
aforementioned Baum-Welch algorithm that iteratively re-
estimates state transition probability matrix, we propose
to estimate “in-state” (absorbing state) transition
probabilities (pii) and “out-state” transition probabilities (
pij, where i≠ j) separately. Figure 5 shows an example of
the weather system with three states.

The out-state transition probabilities can be computed
from the relative frequencies of the out-state state number
transitions from the raw data with identified presumable
hidden state numbers. Note that diagonal cells of the left
matrix in Figure 5 must be zero, as we estimate the in-
state transition probabilities separately and do not
consider these absorbing (sojourning) states. On the other
hand, we can see that the state durations (sojourning time)
could vary from different states and are assumed to be not
necessarily geometrically-distributed. Also, as the hidden
states are identified by the tree model, we may not have
the information about the duration distribution for each
state. Therefore, instead of making assumptions about the
duration distributions, we propose to explicitly estimate
the probability density function of the duration of each
state from the training data by using Kernel Density
Estimation with Gaussian kernel smoother and the rule-
of-thumb estimation of the bandwidth [18] as defined:

h=(4 σ̂5

3 n
)

1
5

where n is the sample size and σ̂ is the sample standard
deviation. The estimated density functions for state
durations are then used in the predictions of the Viterbi
p a t h [19] of HSMM for different lengths (m) of
sojourning/absorbing states.

With the transition probability estimation shown in
Figure 5 that addresses the problem of variable state
duration distributions, the proposed approach is able to
predict the most probable state transitions with variable
time units (durations) given different lengths of
observation sequences. To evaluate the accuracy of the
Viterbi path prediction, we propose using a simple Hit
Ratio and Longest Matched Run (LMRL) Ratio, which
are ratios of numbers of matched states and longest
matched state runs to total numbers of predicted states
respectively. Figure 6 shows an example about how to
calculate both ratios. Given that we have a sequence of
weather conditions for total 18 hours, the most relevant
hidden weather state transitions is S1 → S2 → S3 for 5, 4,
and 9 hours respectively.

Figure 4. A tree provides state splitting rules to
divide data into 3 states/regions

Table 1. Weather system data with
corresponding state numbers

Figure 6. Hit and LMRL Ratios for variable lengths
of actual and predicted states

Figure 5: State transition probability estimation of
the HSMM

Note that one tree model can create one particular
CTHSMM. For any given dataset, we may build many
tree models and then create multiple CTHSMMs with
different parameters (i.e., number of hidden states,
emission matrices, and state transition matrices).
Therefore, the important issue needed to be addressed
here is “which CTHSMM is the best?”. We consider
CTHSMM model selection in the next section.

3.2 Maximum Mutual Information Estimation of
CTHSMM Parameters

As classification tree of CART is used in the proposed
approach to build HSMM, we could consider techniques
used in typical tree model selection. The most common
techniques are tree pre-pruning and post-pruning. The
pre-pruning is to halt the tree construction early by setting
a threshold on a tree growth parameters (e.g. the
minimum number of data points in a leaf node), whereas
post-pruning is to prune subtrees from a grown tree. It is
difficult to choose an appropriate tree pre-pruning
threshold, as high thresholds may create oversimplified
trees, whereas low thresholds may result in complicated
and deep trees. The post-pruning method, on the other
hand, employs cost-complexity pruning [13] algorithm
that finds the balance between tree splitting cost and tree
complexity. A tree with too few leaves creates a trivial
CTHSMM, while a tree with too many leaves results in an
CTHSMM with many states and complex state rules
difficult to understand. Classification tree models are
typically selected by both pre- and post-pruning methods
and are evaluated by misclassification rate using k-fold
cross validation (CV-MR) [13]. Here, however, we are not
certain that good tree models will result in better HSMM.
To evaluate an HSMM, we must consider one of its
important parameter—observation (emission) matrix,
which indicates how well the connection between the
hidden states and observations. Take previous weather
system as the example again. Assume that we have an
HSMM from a tree model as shown in Figure 7.

Suppose observation Matrix X is from a tree with two leaf
nodes. We would like to have one more split to obtain one
more state/leaf. A new tree with Matrix Z provides us
more information than a tree with Matrix Y does, as we
know if the system is in State 3, most likely the weather
condition is Cloudy.

We can measure how much information an
observation matrix can give us by calculating its Mutual
Information (MI) [20] in bits, as defined:

MI=∑
i=1

o

∑
j=1

s

P(Oi,S j)log2(
P(Oi,S j)
P(O i)P(S j)

)

w h e r e P(O i,S j) are State-to-Observation joint
probabilities, which can be obtained by multiplying the
prior probabilities of the states P(S j) as defined by Bayes’
theorem, i.e.

P(Oi,S j)=P(O i∣S j)P(S j)

The MIs for Matrix X, Y, and Z are 0.4184, 0.3090, and
0.8312 bits respectively, which also suggests that MI is an
appropriate measure to evaluate the observation matrices.
Therefore, instead of selecting tree models based on the k-
fold cross validation misclassification rate, we could
consider a tree model that creates an HSMM with
maximum MI—Maximum Mutual Information Estimation
(MMIE) [20]. Specifically, here we consider a tree model
with maximum MI given parameter minbucket, a
minimum numbers of data points in a leaf node to limit
the tree growth, as defined:

minbucketmaxMI= argmax
minbucket ∈ 1,[|traindata|]

MI(minbucket , traindata)

where traindata and |traindata| are the training dataset used
to build the model and the number of total data points
(records) in the dataset. The goal is to choose a minbucket
(between 1 and |traindata|) that maximizes the objective
function (MI) that computes the mutual information of a
given CTHSMM. In the next section, we discuss the role
of MI again in more detail when it is applied to the
selection of the best CTHSMM.

4. Experimental Result and Discussion

We demonstrate the proposed CTHSMM with a real-
world dataset. All experiment are implemented in R
version 3.1.1[21] with package rpart [22] and mhsmm
[23]. A series of steps to build the CTHSMM is illustrated
in Figure 8. These steps can be summarized as follows: 1)
Divide data into two different parts as training and testing
datasets; 2) Use CART with both post-pruning (cost-
complexity) and pre-pruning (MMIE) methods to learn
candidate CTHSMMs from the training dataset; 3) Apply
state splitting rules to the predictors of the testing dataset
to obtain presumable state sequences of testing dataset; 4)
Generate Viterbi paths (predicted hidden state sequences)
given the observation sequences from testing dataset; 5)
Calculate the averages of hit and LMRL ratios and create
plots for model evaluation.

Figure 7. An observation matrix with one more
different splits

The dataset used here is from the Children’s Hospital
of Pittsburgh (CHP). It consists of one categorical
dependent variable as a patient’s current location, in
“ICU” or “Floor” (public ward), one continuous variable
as the duration in hour, and five continuous independent
variables as five vital signs for a patient: Diastolic Blood
Pressure (DBP), Systolic Blood Pressure (SBP),
Respiratory Rate per minute (RR), SpO2 Bedside Monitor
(SPO2), and Body Temperature (Temp). There are 13,006
rows for total 359 patients who are children between one
and six years old and were hospitalized in 2008. Table 2
shows a sample of CHP data for a patient. These patients
have previously reported with respiratory problems. The
goal of using this dataset is to explore whether CTHSMM
can help doctors understand patients’ vital sign pattern
dynamics, evaluate patient respiratory complaint risk, and
further improve hospital bed utilization rate.

We first divided CHP data by randomly sampling
approximately 70% patients from CHP data as the
training dataset and the rest of 30% data are considered as
the testing dataset. There are total 8,734 and 4,272 rows
for training and testing datasets respectively. The
proposed steps of CTHSMM learning and selection
process is then applied to the training dataset to construct
candidate CTHSMMs. We first used the cost-complexity
post-pruning algorithm to continuously prune a fully-
growth tree model (with 1% of training data records as the
threshold of the minimum number of data points in a leaf
node). There are one fully-grown tree and six pruned tree

models created after the post-pruning process. One
additional candidate CTHSMM is also created by using
the proposed MMIE. We found that, for the training
dataset with 8,734 rows from CHP data, a tree model as
shown in Figure 9 with minbucket = 101, can maximize
the MI (0.2098 bits).

Next, the testing dataset of CHP is used to evaluate
these eight candidate CTHSMMs. We applied state
splitting rules from each candidate CTHSMM to mapping
predictors (five vital signs) into presumable hidden state
sequences (vital sign pattern dynamics). On the other
hand, each patient’s location sequence (observation
sequence) of the testing dataset is used to infer most
probable state sequences (predicted Viterbi path) with
different lengths (time periods). Comparing the actual and
predict state sequences, we can then compute the
aforementioned average hit and LMRL ratio. Figure 10
shows both measures for seven CTHSMMs with different
lengths of predicted sequences/times in hour.

Figure 8. CTHSMM model selection process

Figure 9. Tree selected by MMIE,
MI = 0.2098 bits, CV-MR = 0.1975

(a)

(b)

Figure 10. Average Hit and LMRL Ratio with
different hours of prediction

Table 2. ﻿A sample of CHP dataset

It suggests that predicting longer time would result in
lower accuracy in terms of average hit and LMRL ratios.
Also, we expect that CTHSMMs with fewer states would
inevitably perform better. For example, the CTHSMM
with 6-pruning tree has highest hit and LMRL ratios,
because there are only two hidden states and the chance of
hits are relatively higher. However, the CTHSMM
selected based on MMIE (11 hidden states) performs
comparatively well even with more states compared to
CTHSMMs with fully-grown or 2 & 3-pruning trees,
which also suggest that CTHSMM selected by MMIE
provides us more information and relatively higher
accuracy of Viterbi path prediction.

Let's consider real-world applications of the proposed
approach. Here, we choose the CTHSMM built from the
tree in Figure 9 to infer most probable a patient’s vital
sign pattern dynamics given sequence of his/her location
changes, because the model with maximum MI has shown
that it could provide us some information (from the state
splitting rules) and relatively better accuracy of sequence
prediction. Table 3 shows its observation matrix with the
state definition rules. Note that those vital signs out of
normal ranges are colored in red.

Again, the CTHSMM can help answer the question
—“what are the most probable sequence patterns relevant
to a given sequence of observable events?”. Here we
enumerate three possible application scenarios:
Scenario 1: “Suppose that a patient stayed in ICU for a
while. Then he was moved to Floor. Based on selected
CTHSMM, what would be the most probable the patient’s
vital sign state dynamics given different lengths of times
(sequences) he stayed in ICU and Floor?” As shown in
Figure 10b, if we predict state sequences longer than 21
hours, the accuracy of prediction are lower than 70% in
terms of average LMRL ratio. Thus, we here only discuss
the cases within 21 hours in the following examples. In
Figure 11, we consider the case in Scenario 1 that the
patient was first in ICU and then was moved to Floor. We
can see that there is a “transition state” (e.g. S10) before
the patient was moved to Floor, which seems reasonable,
as patients would most likely be moved from ICU to
Floor only when their vital sign conditions are better.

Scenario 2: “Another situation is that a patient first stayed
in Floor. Then his condition became worse. Doctors
decided to move him to ICU and keep monitoring him.
Given the selected CTHSMM, again, what would be the
most probable the patient’s vital sign patterns dynamics?”
Here, we consider the reverse cases in Scenario 2 that the
patient was first admitted, and then was moved from
Floor to ICU. Figure 12 shows a similar situation that
there is a transition state (S3) before a patient is moved to
different location. It is intuitive that the doctors would
move a patient to ICU most likely when the patient’s is
very bad (RR >= 48 and DBP < 50).

Scenario 3: “Suppose that there is an unusual situation
that a patient was admitted to the hospital but was moved
between Floor and ICU back and forth several times, as
his condition was never stable. We would like to know, in
such cases, whether the patient vital signs would become
stable.” Scenario 3 is a dramatic case as there may be
many observation transitions (location changes). Figure
13 shows sample results when we applied CTHSMM
learned from the data to the prediction of most probable
hidden state (vital sign pattern) sequences with different
time periods.

Table 3. ﻿Observation matrix with state definition
rules for the CTHSMM with maximum MI

Figure 12. Most probable vital sign sequences
given different patients’ location within 18 hours

for Scenario 2

Figure 11. ﻿Most probable vital sign sequences
given different patients’ location within 18

hours for Scenario 1

We can see that, given different sequence of the
observations (locations), the CTHSMM can both
characterize more detail about state transitions with
variable durations and discover most relevant sequences
of hidden states (vital sign patterns).

5. Conclusion

We proposed a novel process discovery approach that
integrates hidden semi-Markov model and classification
trees to uncover hidden system state patterns and build a
probabilistic process model simultaneously. The
experimental results shows that it can help identify most
frequent sequence of system state changes relevant to a
given sequence of observable events. The state definition
rules extracted from classification tree provides human-
comprehensible information about the system dynamics.
The most probable patterns of system state changes along
with variable state durations can help decision maker to
understand the system development in temporal-
probabilistic manner.

6. References

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mob.
Netw. Appl., vol. 19, no. 2, pp. 171–209, 2014.
[2] Y. Kang and V. Zadorozhny, “Process monitoring using
maximum sequence divergence,” Knowledge and Information
Systems, pp. 1–29, 2015.
[3] W. M. P. Van Der Aalst, Process Mining: Discovery,
Conformance and Enhancement of Business Processes.
Springer-Verlag New York Inc, 2011.
[4] K. M. van Hee, Workflow management: models, methods,
and systems. The MIT press, 2004.
[5] M. Dumas, W. M. Van der Aalst, and A. H. Ter Hofstede,
Process-aware information systems: bridging people and
software through process technology. Wiley-Interscience, 2005.
[6] C. G. Cassandras and S. Lafortune, Introduction to discrete
event systems. Springer, 2008.

[7] D. Koller and N. Friedman, Probabilistic graphical
models. MIT press, 2009.
[8] L. Rabiner and B. Juang, “An introduction to hidden
Markov models,” ASSP Mag. IEEE, vol. 3, no. 1, pp. 4 –16, Jan.
1986.
[9] A. N. Langville and C. D. Meyer, Google page rank and
beyond. Princeton Univ Pr, 2006.
[10] L. R. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proc. IEEE, pp.
257–286, 1989.
[11] I. K. Fodor, “A survey of dimension reduction techniques,”
Cent. Appl. Sci. Comput. Lawrence Livermore Natl. Lab., 2002.
[12] C. Ratanamahatana, E. Keogh, A. J. Bagnall, and S.
Lonardi, “A Novel Bit Level Time Series Representation with
Implication of Similarity Search and Clustering,” in Advances in
Knowledge Discovery and Data Mining, vol. 3518, T. B. Ho, D.
Cheung, and H. Liu, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 771–777.
[13] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, vol. 1. Chapman &
Hall/CRC, 1984.
[14] C. Cortes and V. Vapnik, “Support-Vector Networks,”
Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995.
[15] H. Singer and M. Ostendorf, “Maximum likelihood
successive state splitting,” in Acoustics, Speech, and Signal
Processing, IEEE International Conference, 1996, vol. 2, pp.
icassp, pp. 601–604.
[16] V. S. Barbu and N. Limnios, Semi-Markov chains and
hidden semi-Markov models toward applications: their use in
reliability and DNA analysis, vol. 191. Springer, 2008.
[17] J. Sansom and P. Thomson, “Fitting hidden semi-Markov
models to breakpoint rainfall data,” J. Appl. Probab., vol. 38, pp.
142–157, 2001.
[18] B. W. Silverman, Density estimation for statistics and data
analysis, vol. 26. CRC press, 1986.
[19] J. Forney, G.D., “The viterbi algorithm,” Proc. IEEE, vol.
61, no. 3, pp. 268 – 278, Mar. 1973.
[20] L. Bahl, P. Brown, P. De Souza, and R. Mercer, “Maximum
mutual information estimation of hidden Markov model
parameters for speech recognition,” in Acoustics, Speech, and
Signal Processing, IEEE International Conference on
ICASSP’86., 1986, vol. 11, pp. 49–52.
[21] R Core Team, “R: A Language and Environment for
Statistical Computing,” R Foundation for Statistical Computing,
Vienna, Austria, 2014. [Online]. Available: http://www.R-
project.org/.
[22] T. M. Therneau, E. J. Atkinson, and others, An introduction
to recursive partitioning using the RPART routines. Technical
Report 61. URL http://www. mayo. edu/hsr/techrpt/61. pdf,
1997.
[23] J. O’Connell, S. Højsgaard, and others, “Hidden semi
markov models for multiple observation sequences: The mhsmm
package for R,” J. Stat. Softw., vol. 39, no. 4, pp. 1–22, 2011.

Figure 13. Most probable vital sign sequences
given different patients’ location and times for

Scenario 3

	1. Introduction
	2. Background and related work
	3. Proposed approach—Classification Tree Hidden Semi-Markov Model
	3.1 Process Discovery using CTHSMM
	3.2 Maximum Mutual Information Estimation of CTHSMM Parameters

	4. Experimental Result and Discussion
	5. Conclusion
	6. References

